

Where's Your Million-Dollar* Nugget?

October 9, 2024

Eric Hsieh Deputy Assistant Secretary for Energy Storage

EIA AEO Storage Capacity: Projected vs Actual

EIA Annual Energy Outlook and Form 860 Data, as noted. *2024 data includes projects under construction

2030

AEO 2018
AEO 2019
AEO 2020
AEO 2021
AEO 2022
AEO 2023
EIA 860 (2024*)

2

82% of Battery Storage found in CA; TX, AZ

Battery Plants by Size and StatusUnder Construction

Operating

Most Commercial ESS: Lithium; Under 4 hours

6100 Hospitals

19,500 Incorporated Places

>1200 Storage Startups (Tracxn)

Office of

, dl 111 - til нH

130,000 Primary and Secondary Schools

Data from Westly Group, EPRI, Traxcn, U.S. Census, EIA, Department of Education, American Hospital Association, and U.S. Religion Census

OE Opportunities: Go Beyond Business-As-Usual

\$15M ESS Office of Technology Liftoff Deployment Electricity \$15M "Focus Areas" Demo and Validation Trends **Critical Facilities Energy** \$15M Resilience Increase storage Geographically accessibility to **Energy Storage for Social** concentrated \$9M more users Equity **Innovator and Community** \$1M Diversify away Almost Vouchers from lithium exclusively Aligning Manufacturability & lithium \$8M \bigoplus Preproduction Design[^] Beyond the Meter Energy Leapfrog to \$200k Mostly under 4 Storage Integration Prize* 10-24+ durations hours duration **Energy Storage Innovations** \$300k Prize Round 2^

Solution Pathways: Familiar to Novel

Voucher	Lab Content, Capabilities, and Tools
10s-100s	1000s+
At DOE Schedule	Recipient- Driven
Low-Medium	Zero-Medium
Mutually Defined	Self- or Mutually- Defined
In-Kind	In-Kind, Variable
~\$1M	~\$330M

Energy Storage Content Creators: OE's \$330M Investment

Pathways that Transform Content into Value

Value Examples

Accelerated manufacturing Expanded market opportunities Higher margins from differentiated products

Adapt: Moratoria vs. Inspiration

Adapt: Battery Wear – Unused vs. Aged Cells

Goal

More Accurate Premiums

License: Environmental Sustainability and Performance

Cycle,#

Goal

Lower cost, higherperforming, environmentallyfriendly solution

Information on specific licensing mechanisms available at <u>https://www.energy.gov/gc/</u> <u>laboratory-partnering</u>

Partner: Competitive Analysis of Lithium vs. New Technology

Partner: Testing, Validation, Projection via GSL and ROVI

How to find your million-dollar* nugget

*payback value not guaranteed

...to accelerate your solution.

Expanded market Higher margins from differentiated products

Lab Partnering Service: Capabilities, Facilities, and Experts

Labs Explore ~

LAB PARTNERING SEPARCE

vered by the Office of Technology Transitions in the U.S. Department of Energy

0

Energy Storage Grand Challenge

The Department of Energy's (DOE) Energy Storage Grand Challenge (ESGC) is a comprehensive program to accelerate the development, commercialization, and utilization of next-generation energy storage technologies and sustain American global leadership in energy storage. This comprehensive set of solutions requires concerted action, guided by an aggressive goal: to develop and domestically manufacture energy storage technologies that can meet all U.S. market demands by 2030.

∃≟ Filters		View: Technology Summaries 🛩 View: By Labs 🛩	Search Q
Energy Storage Grand Challenge	^	Technology Summaries: Showing 1 - 25 of 230	Sort By: Relevance ~ Items/Page: 25 -
Storage (83) Chemical and Thermal Storage (105) Elexible Generation and Controlistie Loads (43) Policy and Veluation (6) Power Electronics (14)	~ ~ ~	Fabrication of Uniform and Spatially Controlled Nanostr Technology <u>A</u> Lemmes Behaley National Laboratory <u>W</u> Chemical and Thermal 5 Technology <u>A</u> Lemmes Behaley National Laboratory <u>W</u> Chemical and Thermal 5 Researchers all Benkeley Lab have succeeded in fabricating nanowire arrays with feature d amploys standard semiconductor manufacturing techniques to achieve highly uniform dimens of the nanosemeors.	Tuctures on Substrates terrige territor Sentence & Detectors immissions of 10 mm or less on a water-sized scale. The method sions and doping levels as well as precise control over the location
		Fractionation and Removal of Solutes from Ionic Liquid Technology A Comme Backetey National Calescape Person 4 Default Researchers at the Joint BioEnergy Institute (JBE) have developed a technology to fractionat water miscible ionic liquids. The JBEI technology utilizes specific mixtures of solvents to par- high pressure, high temperature, safe, or other reagents that cannot be recovered and reused	S Chemical and Thermal Storage Industry Applications Matgatistic e and recover biomaterials dissolved in an ionic liquid and to purify scipitate or extract compounds dissolved in an ionic liquid without in a closed cycle process. Compared to existing approaches, the
		Low Temperature Lignin Dissolution, Depolymerization Technology A Lawrence Beteley National Laboratory Technology A Lawrence Beteley National Laboratory Technology A Lawrence Beteley National Laboratory Technology Technology Can dissolve the material with more than 30 wt% in s	Channel and Brotechnology Channel and Thermal Storage Min. ve and depolymerize lightn under low temperature in separate or physic under low temperature, below 100°C. After dissolution and

Funding ~

Patents ~

Stanley Atcitty 9

How to Partner Q

ENERGY STORAGE RENEWABLE ENERGY BID RECTIONAL ELECTRICAL STORAGE GRID INTEGR FLEXIBLE GENERATION AND CONTROLLABLE LOADS POWER ELECTRONICS

About

Dr. Stan Atcitty received his BS and MS degree in electrical engineering from th Mexico State University in 1993 and 1995, respectively. He received his PhD fr Tech University in 2006. He is presently a Distinguished Member of Technical Sandla National Laboratories in the Energy Storage Technology & Systems deg has worked at Sandia for over 25 years. His interest in research is power electr necessary for integrating energy storage and distributed generation with the el grid. He leads the power electronics subprogram as part of the DOE Office of E Energy Storage Program.

https://esgc.labpartnering.org

IION	Laboratory Laboratory Sandia National Laboratories
e New om Virginia	Questions?
Staff at partment. He ronics lectric utility Electricity	ASK ME

Model Selection Platform

A few screening questions to find the best model (out of >60 choices) for your scenario

https://msp.pnnl.gov/

Access to Additional DOE Resources

August 2024

https://www.energy.gov/energy-storage-grand-challenge/

U.S. DEPARTMENT OF

ENERGY

Office of

ELECTRICITY

Battery Safety and Reliability Methods, Codes, Standards

Community Capacity Building and Deployment Assistance

<u>Capacity-Building for</u> <u>Regulators</u> (including MI, LA, VT, GU)

DOE Office of <u>Electricity</u> <u>Storage Peer Review Archive</u> (2010-2024)

Engage and Connect with DOE

- Outreach takes many forms
 - Informal input at DOE events (e.g., ESGC Summit, OE Peer Review) \bullet
 - Feedback for ESGC Roadmap ۲
 - EAC Public Hearing (November, 2024)
 - Targeted listening sessions
 - Formal Requests for Information (RFIs)
 - Mini-solicitations (e.g. prizes)
 - LDES Consortium
- https://www.energy.gov/oe/office-electricity
 - News and blogs
 - **OE** Activities

ENERGY

Office of ELECTRICITY

- Sign up for OE Updates
- Sign up for Funding Updates

DOE Seeks Input on Energy Storage Manufacturing Challenges

Office of Electricity + DOE Seeks Input on Energy Storage Menufacturing Chellenges

The U.S. Department of Energy's (DOE) Office of Electricity (OE) today announced a Request for Information (RFI) to discover energy storage technology design challenges early on in the manufacturing process. By seeking input from academia, industry, research labs, government agencies and other stakeholders, OE will better understand the design decisions that impact energy storage technology production.

LinkedIn

Web

Office of Electricity

Energy Department Seeks Input on Energy Storage Training Program

APRIL 30, 2024

Office of Electricity

MAY 6, 2024

THE NATIONAL CONSORTIUM FOR THE ADVANCEMENT OF LONG DURATION ENERGY STORAGE TECHNOLOGIES

OE Storage Investments: FY2020-FY2024

- DOE support is much more than direct financial assistance
- Examining OE's public storage content and expertise can increase your odds of finding your million-dollar* nugget

Direct and In-Kind Support ~\$100M

*payback value not guaranteed

DOE National Lab

Thank you

Icons for Use

ШL

BATTERY

STORAGE

FULL

BATTERY STORAGE CHARGE

COMPONENT 2

LONG DURATION STORAGE

PEOPLE

COMPUTER

RESEARCH

DATA

BATTERY

BATTERY RENEWABLE

EXPAND

ADVANCED

ANALYTICS

COMPONENT

COMMUNICATION

COMMUNICATION

CONTINUOUS

POWER GRID

ENERGY

ALERT

POWER PLANT

ELECTRIC

PAPER

Ο

SUPPORT

SECURITY

SECURITY

SOLAR

-0

ENERGY

STORAGE

PLANT

REWNABLE

SECURE COMMS

WIND ENERGY

TECH

BATTERY

 $| \epsilon \rangle$

LASER

GRID MANAGE

RENEWABLE

TECH DEVELOPMENT

RENEWABLE ENERGY

TECH GENERAL

